Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport

نویسنده

  • P J Hollenbeck
چکیده

Cellular homeostasis in neurons requires that the synthesis and anterograde axonal transport of protein and membrane be balanced by their degradation and retrograde transport. To address the nature and regulation of retrograde transport in cultured sympathetic neurons, I analyzed the behavior, composition, and ultrastructure of a class of large, phase-dense organelles whose movement has been shown to be influenced by axonal growth (Hollenbeck, P. J., and D. Bray. 1987. J. Cell Biol. 105:2827-2835). In actively elongating axons these organelles underwent both anterograde and retrograde movements, giving rise to inefficient net retrograde transport. This could be shifted to more efficient, higher volume retrograde transport by halting axonal outgrowth, or conversely shifted to less efficient retrograde transport with a larger anterograde component by increasing the intracellular cyclic AMP concentration. When neurons were loaded with Texas red-dextran by trituration, autophagy cleared the label from an even distribution throughout the neuronal cytosol to a punctate, presumably lysosomal, distribution in the cell body within 72 h. During this process, 100% of the phase-dense organelles were fluorescent, showing that they contained material sequestered from the cytosol and indicating that they conveyed this material to the cell body. When 29 examples of this class of organelle were identified by light microscopy and then relocated using correlative electron microscopy, they had a relatively constant ultrastructure consisting of a bilamellar or multilamellar boundary membrane and cytoplasmic contents, characteristic of autophagic vacuoles. When neurons took up Lucifer yellow, FITC-dextran, or Texas red-ovalbumin from the medium via endocytosis at the growth cone, 100% of the phase-dense organelles became fluorescent, demonstrating that they also contain products of endocytosis. Furthermore, pulse-chase experiments with fluorescent endocytic tracers confirmed that these organelles are formed in the most distal region of the axon and undergo net retrograde transport. Quantitative ratiometric imaging with endocytosed 8-hydroxypyrene-1,3,6-trisulfonic acid showed that the mean pH of their lumena was 7.05. These results indicate that the endocytic and autophagic pathways merge in the distal axon, resulting in a class of predegradative organelles that undergo regulated transport back to the cell body.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A signaling organelle containing the nerve growth factor-activated receptor tyrosine kinase, TrkA.

The topology of signal transduction is particularly important for neurons. Neurotrophic factors such as nerve growth factor (NGF) interact with receptors at distal axons and a signal is transduced by retrograde transport to the cell body to ensure survival of the neuron. We have discovered an organelle that may account for the retrograde transport of the neurotrophin signal. This organelle is d...

متن کامل

Retrograde transport of TrkB-containing autophagosomes via the adaptor AP-2 mediates neuronal complexity and prevents neurodegeneration

Autophagosomes primarily mediate turnover of cytoplasmic proteins or organelles to provide nutrients and eliminate damaged proteins. In neurons, autophagosomes form in distal axons and are trafficked retrogradely to fuse with lysosomes in the soma. Although defective neuronal autophagy is associated with neurodegeneration, the function of neuronal autophagosomes remains incompletely understood....

متن کامل

Impaired retrograde transport of axonal autophagosomes contributes to autophagic stress in Alzheimer’s disease neurons

Neurons face unique challenges of transporting nascent autophagic vacuoles (AVs) from distal axons toward the soma, where mature lysosomes are mainly located. Autophagy defects have been linked to Alzheimer's disease (AD). However, the mechanisms underlying altered autophagy remain unknown. Here, we demonstrate that defective retrograde transport contributes to autophagic stress in AD axons. Am...

متن کامل

Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons

Autophagy is an essential cellular degradation pathway in neurons; defects in autophagy are sufficient to induce neurodegeneration. In this paper, we investigate autophagosome dynamics in primary dorsal root ganglion neurons. Autophagosome biogenesis occurs distally in a constitutive process at the neurite tip. Autophagosomes initially move bidirectionally and then switch to unidirectional, pro...

متن کامل

Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons.

Regional regulation of organelle transport seems likely to play an important role in establishing and maintaining distinct axonal and dendritic domains in neurons, and in managing differences in local metabolic demands. In addition, known differences in microtubule polarity and organization between axons and dendrites along with the directional selectivity of microtubule-based motor proteins su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 121  شماره 

صفحات  -

تاریخ انتشار 1993